Conversion of human fibroblasts to functional endothelial cells by defined factors.
نویسندگان
چکیده
OBJECTIVE Transdifferentiation of fibroblasts to endothelial cells (ECs) may provide a novel therapeutic avenue for diseases, including ischemia and fibrosis. Here, we demonstrate that human fibroblasts can be transdifferentiated into functional ECs by using only 2 factors, Oct4 and Klf4, under inductive signaling conditions. APPROACH AND RESULTS To determine whether human fibroblasts could be converted into ECs by transient expression of pluripotency factors, human neonatal fibroblasts were transduced with lentiviruses encoding Oct4 and Klf4 in the presence of soluble factors that promote the induction of an endothelial program. After 28 days, clusters of induced endothelial (iEnd) cells seemed and were isolated for further propagation and subsequent characterization. The iEnd cells resembled primary human ECs in their transcriptional signature by expressing endothelial phenotypic markers, such as CD31, vascular endothelial-cadherin, and von Willebrand Factor. Furthermore, the iEnd cells could incorporate acetylated low-density lipoprotein and form vascular structures in vitro and in vivo. When injected into the ischemic limb of mice, the iEnd cells engrafted, increased capillary density, and enhanced tissue perfusion. During the transdifferentiation process, the endogenous pluripotency network was not activated, suggesting that this process bypassed a pluripotent intermediate step. CONCLUSIONS Pluripotent factor-induced transdifferentiation can be successfully applied for generating functional autologous ECs for therapeutic applications.
منابع مشابه
SOX17 Regulates Conversion of Human Fibroblasts Into Endothelial Cells and Erythroblasts by Dedifferentiation Into CD34+ Progenitor Cells
BACKGROUND The mechanisms underlying the dedifferentiation and lineage conversion of adult human fibroblasts into functional endothelial cells have not yet been fully defined. Furthermore, it is not known whether fibroblast dedifferentiation recapitulates the generation of multipotent progenitors during embryonic development, which give rise to endothelial and hematopoietic cell lineages. Here ...
متن کاملTherapeutic transdifferentiation of human fibroblasts into endothelial cells using forced expression of lineage-specific transcription factors.
Transdifferentiation is the direct conversion from one somatic cell type into another desired somatic cell type. This reprogramming method offers an attractive approach for regenerative medicine. Here, we demonstrate that neonatal fibroblasts can be transdifferentiated into endothelial cells using only four endothelial transcription factors, namely, ETV2, FLI1, GATA2, and KLF4. We observed a si...
متن کاملSpecification of Hemato-Endothelial-Like Structures and Generation of Hematopoietic Progenitor Cells from Human Pluripotent Stem Cells
Background and purpose: Human pluripotent stem cells (hPSCs) with the ability to differentiate into adult cells have provided a new perspective for treatment of some diseases. But, the efficiency of differentiation methods to generate hematopoietic progenitor cells (HPCs) is faced with multiple challenges. In the present study, we investigated the formation of hemato-endothelial-like structure...
متن کاملHuman Fibroblast Switches to Anaerobic Metabolic Pathway in Response to Serum Starvation: A Mimic of Warburg Effect
Fibroblasts could be considered as connective tissue cells that are morphologically heterogeneous with diverse functions depending on their location and activity. These cells play critical role in health and disease such as cancer and wound by Production of collagen, fibronectin, cytokines and growth factors. Absence of insulin and other growth factors in serum deprivation condition and similar...
متن کاملDirect conversion of adult skin fibroblasts to endothelial cells by defined factors.
BACKGROUND Cell-based therapies to augment endothelial cells (ECs) hold great therapeutic promise. Here, we report a novel approach to generate functional ECs directly from adult fibroblasts. METHODS AND RESULTS Eleven candidate genes that are key regulators of endothelial development were selected. Green fluorescent protein (GFP)-negative skin fibroblasts were prepared from Tie2-GFP mice and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 33 6 شماره
صفحات -
تاریخ انتشار 2013